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Wind is Variable & Forecasts are Imperfect
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Wind is Variable & Forecasts are Imperfect
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State of the Art Forecasting Technology Performance

Table 2

Average Wind Forecast Error
by Time Frame

Forecast Error

Single Plant Region
Hour Ahead
Energy (% Actual) 10 = 15% 6—11%
Capacity (% Rated) 4 - 8% 3-6%
Day Ahead
Hourly Energy (% Actual) 25 = 30% 15 - 18%
Hourly Capacity (% Rated) 10 = 12% 6 — 8%

Source: Smith, 2009.
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Bad Forecasting Results In:

*Requirement of additional balancing
reserves

Underproduction/ curtailment of wind
and solar

-Contingencies and outages
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The Value of Wind Power DebraLew and Michael Milligan
Forecastin g National Renewable Energy Laboratory

_ Gary Jordan and Richard Piwko
Preprint GE Energy

10% Forecasting 20% Forecasting
Improvement Improvement
14 % Wind Penetration $140 M $260 M
24% Wind Penetration $500 M $975 M

~ 1SO-NE Data 201317/19, EIA 2009 Data
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Techno-Economic Goal

Measurement and Data Analytics
that Result in > 40% Improvement
on State of the Art Forecasting
Techniques for
Wind and Solar Power
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Technologies that Can Do It

Hardware: Improved Sensors (Accurate,
Low-Cost and Remote)

Software: Data Aggregation, Analysis
and Forecasting
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Wind Sensing Techniques
RADAR

Anemometer

SODAR

(Sound Detection and Ranginq)




LIDAR: Light Detection and Ranging
Look at the Doppler Shift of Back Scattered Light

State of the Art: Stationary Installations for the
Characterization of Resources

©2011 Catch the Wind, Inc.
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Ranged LIDAR: Can we push this technology and make
it ubiquitous? Can we extend the range > 1 km?

* Wind Speed and Direction Reported
at Three Ranges

* Depth of Field £50m

* Wind Speed Accuracy <+0.2 m/s

* Wind Direction Accuracy £0.7°
* Maximum Range 300m
* Data Reported at 1hz or Greater




Solar Sensing Techniques: How do you deploy widely and
process the data?

PV Cell = Fast Time

Total Sky Imagers _
Scale Irradiance

Sensors

How do you log and
communicate the
data?




Software: Can we bring Cloud Computing
Resources to Numerical Weather Prediction
Models and Machine Learning?
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How Can We Complement Existing DOE Projects
such as the DOE/NOAA Wind Forecasting
Improvement Project
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Forecasting Program Name:
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Emerging Ideas

Real Time Electricity Pricing

Timothy Heidel, ARPA-E Fellow
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Demand for electricity varies

P New England Independent System Operator — System Load 7/19/2006
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Varying demand yields low capacity utilization
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The cost of generation varies
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The cost of generation varies

BUT, the price consumers pay is constant
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Dynamic pricing could avoid the need for new
capacity and reduce cosfs.

Annual Long-Run Savings
(National Estimate):
~ $ 3 Billion

T&D Capacity:
$0.3 Billion, 9%

Annual Short-Run Savings
(National Estimate):
~ $5-10 Billion

A. Faruqui, R. Hledik, S. Newell, J. Pfeifenberger, “The Power of Five Percent,” The Brattle Group, May 2007.

Energy:
$0.3 Billion, 10%

Dynamic pricing requires more granular
measurements of electricity consumption.

* Smart meters are too expensive today: $150-$300 per meter (including
———met 45,___commun|co’nons back-office equipment, and ms’rollo’non)




Substantial cost reductions are needed

Existing approaches rely on a meter at every
customer location

Smart Grid Customer Domain
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Approaches that do not require new meterse

* Individual appliances measure power consumption
» Need cheap, secure, accurate integrated power measurement.
» Devices communicate with utility via Internet automatically

* Substation Measurement
» Nonintrusive load monitoring at the distribution feeder level.

Power \ -
(KW} Oven element

- .
~. Refrigerator .-----4---_____

S Fa
Oven element

Time (Min).
> 2 Hart, “Nonintrusiye Appliance Lead-Monitoring,” IEEE (1992)
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Potential Program Name:

ROVIDING
EAL TIME
INTELLIGENT
COSTS FOR
LECTRICITY
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Emerging Ideas

Higher Efficiency Solar

Asegun Henry, ARPA-E Fellow
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Collect

Peak Normalized Solar Flux
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Collection Conversion
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What about Multi-junction cells with
power tower CPV? band pass light filters




Can We Handle The Heat?

1000X
100W/cm?
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Can We Handle The Heat?

10,000X
1000W/cm?
— 1000 -
£
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O | | e C -l-i O n Spectral Splitting for Optical Systems C O n V e rS i O n

Higher Efficiency With Integrated Cooling
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Potential Program Name:
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Emerging Ideas

Low- or No-Water Power Plant
Cooling

Nicholas Cizek, ARPA-E Fellow




Estimated US Water Flows 2005 (MGD), Total: 400 BGD

Surface
water
(saline)
58000




Estimated US Water Flows 2005 (MGD), Total: 400 BGD

Surface L k

-
.

How will we produce
this electricity e
w1 without this water?

(saline




30% Population Increase by 2030, Mostly DRY PLACES

+20%

%
Projected
Population
Growth
Solley (USGS), 1€ 8; EPRI, )03; Campbell (US DOC), 1997




Traditional Power Plant Cooling

“Open Loop” / “Closed Loop”
“Once-Through” Cooling
Cooling
111
Water Steam
Vapor
Steam
Cooling Condenser
Tower Condensate <——
Condensate
Pump
Freshwater Blowdown

Supply

Q Evaporates H,0O Q Raises River Temp
- Raises Air Temp
- Evaporates H,O

QipPQG-E S 7 | %o



Problem Statement

Dissipate GW-scale low-grade heat (95 F) into air
without evaporating water
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Air Cooled Power Plant

Steam

Condensate

Huge Radiator
-

Q Raises Air Temp Only
But T, = T, instead of T, e, = T ave
6-16% Less Electricity
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Are there low-/no-water cooling tech pathways to
achieve T, =T, . Instead of T, =T,

Thermal Battery (low vapor pressure)
e Dirt

 Liquid besides water

Otherwise efficiency loss unavoidable

Gl D| [ QN(C



Low-/No-Water Cooling Tech Paths To Wet Cooling LCOE

Increase Surface Area — thermally conducting
polymer, metal foam

_.____.__-—Hr—__“"‘—*——;__———._

_‘__H'_.“_‘

Boomsma, et a/ Meaiamcs of Materlals 2003 - ——— — —
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Low-/No-Water Cooling Tech Paths To Wet Cooling LCOE

Increase Air Speed — elevate condenser

A

Wind ~10 m/s at 100 m
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Low-/No-Water Cooling Tech Paths To Wet Cooling LCOE

Increase Thermal Conduction Coefficient —
coatings, nanostructures

Non-Rankine bottoming cycle — parallel Stirling
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Low-/No-Water Power Plant Cooling Techno-Economic Goal

Dry Cooled Power Plant LCOE

< 5¢/kWh
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Low-/No-Water Power Plant Cooling Name

MPROVING

OOLING
FFICIENCY of

WER
LANTS
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